高辻 義行 (タカツジ ヨシユキ)

TAKATSUJI Yoshiyuki

写真a

職名

助教

研究室住所

福岡県北九州市若松区ひびきの2-4

研究分野・キーワード

鍍金、触媒電極、CO2資源化

取得学位 【 表示 / 非表示

  • 九州工業大学 -  博士(工学)  2014年03月

学内職務経歴 【 表示 / 非表示

  • 2017年01月
    -
    継続中

    九州工業大学   大学院生命体工学研究科   生体機能応用工学専攻   助教  

 

論文 【 表示 / 非表示

  • Photoelectrochemical reduction of CO2 using a TiO2 photoanode and a gas diffusion electrode modified with a metal phthalocyanine catalyst

    Katsuichiro Kobayashi, Shi Nee Lou, Yoshiyuki Takatsuji, Tetsuya Haruyama,Youichi Shimizu, and Teruhisa Ohno

    Electrochimica Acta    338   2020年01月  [査読有り]

    DOI

  • 水を直接の水素源として窒素還元を行う「相界面反応」によるアンモニア合成

    酒倉辰弥、高辻義行、春山哲也

    化学工業    70 ( 11 ) 805 - 809   2019年11月  [査読有り]  [招待有り]

  • Contribution of discharge excited atomic N, N2*, and N2+ to a plasma/liquid interfacial reaction as suggested by quantitative analysis

    Tatsuya Sakakura, Naoya Murakami, Yoshiyuki Takatsuji, Masayuki Morimoto and Tetsuya Haruyama

    ChemPhysChem    20 ( 11 ) 1467 - 1474   2019年06月  [査読有り]

    DOI

  • Experimental and Theoretical Elucidation of Electrochemical CO <inf>2</inf> Reduction on an Electrodeposited Cu <inf>3</inf> Sn Alloy

    Morimoto M., Takatsuji Y., Iikubo S., Kawano S., Sakakura T., Haruyama T.

    Journal of Physical Chemistry C    123 ( 5 ) 3004 - 3010   2019年02月  [査読有り]

     概要を見る

    © 2019 American Chemical Society. The reaction selectivity of an electrode catalyst can be modulated by regulating its crystal structure, and the modified electrode may show different CO 2 reduction selectivity from that of its constituent metal. In this study, we investigated the mechanisms of the electrochemical CO 2 reduction on an electrodeposited Cu 3 Sn alloy by experimental and theoretical analyses. The electrodeposited Cu 3 Sn alloy electrode showed selectivity for CO production at all the applied potentials, and HCOOH production increased with an increase in the applied potential. In particular, hydrocarbon generation was well suppressed on Cu 3 Sn(002). To understand this selectivity change in electrochemical CO 2 reduction, we conducted density functional theory calculations for the reaction on the Cu 3 Sn(002) surface. According to the theoretical analysis, the Cu sites in Cu 3 Sn(002) contributed more to the stabilization of H∗, COOH∗, and CO∗ as compared with the Sn sites. Furthermore, the results indicated that Cu 3 Sn(002) decreased the surface coverage of reaction intermediates such as H∗, COOH∗, and CO∗. We believe that these effects promoted CO∗ desorption while suppressing H 2 generation, CO∗ protonation, and C-C bond formation. The results also suggested that the surface Sn concentration significantly affected the reaction selectivity for HCOOH production from CO 2 .

    DOI Scopus

  • Highly Selective Methane Production Through Electrochemical CO<inf>2</inf> reduction by Electrolytically Plated Cu-Co Electrode

    Takatsuji Y., Nakata I., Morimoto M., Sakakura T., Yamasaki R., Haruyama T.

    Electrocatalysis    10 ( 1 ) 29 - 34   2019年01月  [査読有り]

     概要を見る

    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Among the electrode materials used for electrolytic CO2 reduction, only Cu shows a special function of producing not only carbon monoxide (CO), but also hydrocarbons from CO2. We found that, in electrolytic CO2 reduction using an electrolytically plated Cu-Co electrode, a hydrocarbon product with high faradaic efficiency (FE) could be obtained with low-FE CO. The plated electrodes have a Co solid solution on the Cu surface. The non-localized Co changes the adsorption energy of the reaction intermediate in CO2 reduction. Consequently, by increasing the Co content in Cu, HCOOH can be selectively produced. Further, in electrolytic CO2 reduction with an applied potential of − 1.19 V vs. reversible hydrogen electrode (RHE), the selectivity of methane (CH4) production improved, while the selectivity of ethylene (C2H4) formation lowered. In the reduction using the plated electrode containing 14% Co, the FE of CH4 production reached the highest at 47.7%. These results suggested that mixing Co in Cu promotes the hydrogenation of CH2* to CH3* and inhibits the dimerization of CH2* species. Furthermore, this research on plated electrodes is useful for the development of catalytic electrodes for electrolytic CO2 reduction. [Figure not available: see fulltext.]

    DOI Scopus

全件表示 >>