2025/08/20 更新

ハマナ マコト
浜名 誠
HAMANA Makoto
Scopus 論文情報  
総論文数: 0  総Citation: 0  h-index: 5

Citation Countは当該年に発表した論文の被引用数

所属
大学院情報工学研究院 情報・通信工学研究系
職名
教授
外部リンク

研究分野

  • 情報通信 / 情報学基礎論  / プログラム意味論

  • 情報通信 / ソフトウェア  / プログラム言語理論

  • 情報通信 / 情報学基礎論  / 項書換え系

取得学位

  • 筑波大学  -  博士(工学)   1998年03月

学内職務経歴

  • 2024年04月 - 現在   九州工業大学   大学院情報工学研究院   情報・通信工学研究系     教授

論文

  • Foundations of Haskell’s Rewrite Rules Based on Higher-Kinded Polymorphic Rewrite Systems 査読有り 国際誌

    Hamana M.

    Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics   14991 LNAI   79 - 95   2024年01月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    The aim of this paper is to establish theoretical foundations of GHC’s rewrite rules. The Glasgow Haskell Compiler (GHC) has the feature of rewrite rules to specify optimising transformations. Rewrite rules have been widely used in many libraries. However, there has been no theory to formalise the rules and establish their correctness. We present System F<inf>RE</inf>—the polymorphic λ-calculus System F<inf>ω</inf> extended with higher-order term rewriting and equational reasoning to model GHC’s rewrite rules. We develop a theory and methods for verifying correctness of rewrite rules. The key to our method is to guarantee the rewriting properties of local confluence and strong normalisation. We prove the Rule Meaning Preservation Theorem that gives a simple criterion for establishing correctness of rewrite rules, which is suited for mechanical checking.

    DOI: 10.1007/978-3-031-69042-6_5

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85203137220&origin=inward

  • Term Evaluation Systems with Refinements: First-Order, Second-Order, and Contextual Improvement 査読有り 国際誌

    Muroya K., Hamana M.

    Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics   14659 LNCS   31 - 61   2024年01月

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    For a programming language, there are two kinds of term rewriting: run-time rewriting (“evaluation”) and compile-time rewriting (“refinement”). Whereas refinement resembles general term rewriting, evaluation is commonly constrained by Felleisen’s evaluation contexts. While evaluation specifies a programming language, refinement models optimisation and should be validated with respect to evaluation. Such validation can be given by Sands’ notion of contextual improvement. We formulate evaluation in a term-rewriting-theoretic manner for the first time, and introduce Term Evaluation and Refinement Systems (TERS). We then identify sufficient conditions for contextual improvement, and provide critical pair analysis for local coherence that is the key sufficient condition. As case studies, we prove contextual improvement for a computational lambda-calculus and its extension with effect handlers.

    DOI: 10.1007/978-981-97-2300-3_3

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194818397&origin=inward

  • Complete algebraic semantics for second-order rewriting systems based on abstract syntax with variable binding 査読有り 国際誌

    Hamana M.

    Mathematical Structures in Computer Science ( Cambridge University Press )   32 ( 4 )   542 - 573   2022年04月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    By using algebraic structures in a presheaf category over finite sets, following Fiore, Plotkin and Turi, we develop sound and complete models of second-order rewriting systems called second-order computation systems (CSs). Restricting the algebraic structures to those equipped with well-founded relations, we obtain a complete characterisation of terminating CSs. We also extend the characterisation to rewriting on meta-terms using the notion of -monoid.

    DOI: 10.1017/S0960129522000287

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85144461707&origin=inward

  • MODULAR TERMINATION FOR SECOND-ORDER COMPUTATION RULES AND APPLICATION TO ALGEBRAIC EFFECT HANDLERS 査読有り 国際誌

    Hamana M.

    Logical Methods in Computer Science   18 ( 2 )   18 - 32   2022年01月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    We present a new modular proof method of termination for second-order computation, and report its implementation SOL. The proof method is useful for proving termination of higher-order foundational calculi. To establish the method, we use a variation of the semantic labelling translation and Blanqui’s General Schema: a syntactic criterion of strong normalisation. an application, we show termination of a variant of call-by-push-value calculus with algebraic effects, an effect handler and effect theory. We also show that our tool SOL is effective to solve higher-order termination problems.

    DOI: 10.46298/lmcs-18(2:18)2022

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133171066&origin=inward

  • GSOL: A Confluence Checker for Haskell Rewrite Rules 査読有り

    Date Y.F., Hamana M.

    Computer Software   39 ( 3 )   82 - 87   2022年01月

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    We present a tool GSOL, a confluence checker for GHC. It checks the confluence property for rewrite rules in a Haskell program by using the confluence checker SOL (Second-Order Laboratory). The Glasgow Haskell Compiler (GHC) allows programmers to use rewrite rules to optimize Haskell programs in the compilation pipeline. Currently, GHC does not check the confluence of the user-defined rewrite rules. If the rewrite rules are not confluent then the optimization using these rules may produce unexpected results. Therefore, checking the confluence of rewrite rules is important. We implement GSOL using the plugin mechanism of GHC. and provide three usages. We demonstrate confluence checking in the Arrow library.

    DOI: 10.11309/jssst.39.3_82

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85141247947&origin=inward

  • Polymorphic computation systems: Theory and practice of confluence with call-by-value 査読有り 国際誌

    Makoto Hamana, Tatsuya Abe, Kentaro Kikuchi

    Science of Computer Programming ( Elsevier BV )   187   102322   2020年02月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    Abstract We present a new framework of polymorphic computation rules that can accommodate a distinction between values and non-values. It is suitable for analysing fundamental calculi of programming languages. We develop a type inference algorithm and new criteria to check the confluence property. These techniques are then implemented in our automated confluence checking tool PolySOL . Its effectiveness is demonstrated through examination of various calculi, including the call-by-need lambda-calculus, Moggi's computational lambda-calculus, and skew-monoidal categories.

    DOI: 10.1016/j.scico.2019.102322

    Scopus

    CiNii Research

    その他リンク: https://api.elsevier.com/content/article/PII:S0167642319301182?httpAccept=text/xml

  • Theory and Practice of Second-Order Rewriting: Foundation, Evolution, and SOL 招待有り 査読有り 国際誌

    Hamana M.

    Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics   12073 LNCS   3 - 9   2020年01月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    We give an overview of the theory and practice of second-order rewriting. Second-order rewriting methods have been demonstrated as useful that is applicable to important notions of programming languages such as logic programming, algebraic effects, quantum computation, and cyclic computation. We explain foundation and evolution of second-order rewriting by presenting the framework of second-order computation systems. We also demonstrate our system SOL of second-order laboratory through various programming language examples.

    DOI: 10.1007/978-3-030-59025-3_1

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85091339318&origin=inward

  • How to prove decidability of equational theories with second-order computation analyser SOL 査読有り 国際誌

    MAKOTO HAMANA

    Journal of Functional Programming ( Cambridge University Press (CUP) )   29   2019年01月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    <jats:title>Abstract</jats:title>
    <jats:p>We present a general methodology of proving the decidability of equational theory of programming language concepts in the framework of second-order algebraic theories. We propose a Haskell-based analysis tool, i.e. Second-Order Laboratory, which assists the proofs of confluence and strong normalisation of computation rules derived from second-order algebraic theories. To cover various examples in programming language theory, we combine and extend both syntactical and semantical results of the second-order computation in a non-trivial manner. We demonstrate how to prove decidability of various algebraic theories in the literature. It includes the equational theories of monad and λ-calculi, Plotkin and Power’s theory of states and bits, and Stark’s theory of π-calculus. We also demonstrate how this methodology can solve the coherence of monoidal categories.</jats:p>

    DOI: 10.1017/s0956796819000157

    Scopus

    CiNii Research

    その他リンク: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0956796819000157

  • CUI on Web:ソフトウェア検証やテストCUIのためのモダンWebインターフェース枠組

    浜名 誠

    日本ソフトウェア科学会大会講演論文集   38   2021年01月

     詳細を見る

    担当区分:最終著者   記述言語:日本語   掲載種別:研究論文(研究会,シンポジウム資料等)

    CiNii Research

  • GSOL: A Confluence Checker for Haskell Rewrite Rules

    浜名 誠

    日本ソフトウェア科学会大会講演論文集   38   2021年01月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(研究会,シンポジウム資料等)

    CiNii Research

  • The System SOL version 2020 国際誌

    浜名 誠, 菊池 健太郎

    Proceedings of the 9th International Workshop on Confluence   IWC 2020   81 - 81   2020年01月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    CiNii Research

▼全件表示

担当授業科目(学内)

  • 2024年度   プログラミング言語の基礎理論