久米村 百子 (クメムラ モモコ)

KUMEMURA Momoko

写真a

職名

准教授

研究室住所

福岡県北九州市若松区ひびきの2-4

取得学位 【 表示 / 非表示

  • 東京都立大学 -  博士(理学)  2005年03月

学内職務経歴 【 表示 / 非表示

  • 2018年04月
    -
    継続中

    九州工業大学   大学院生命体工学研究科   生体機能応用工学専攻   准教授  

 

論文 【 表示 / 非表示

  • Nanopin – A MEMS based sensor for the analysis of single cell mechanical properties(共著)

    Momoko Kumemura, Lili C. Kudo, Zhongcai Ma, and Stanislav L. Karsten

    33rd IEEE International Conference on Micro Electro Mechanical Systems      311 - 314   2020年01月  [査読有り]

    Canada  Vancouver  2020年01月  -  2020年01月

  • Real-time measurement of the physical properties of DNA-ligand complexes (共著)

    Deniz Pekin, Grégoire Perret, Momoko Kumemura, Laurent Jalabert, Samuel Meignan, Hiroyuki Fujita, Dominique Collard, and Mehmet C. Tarhan

    The 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS 2019)      892 - 893   2019年10月  [査読有り]

    Switzerland  Basel  2019年10月  -  2019年10月

  • Boyden chamber-based compartmentalized tumor spheroid culture system to implement localized anticancer drug treatment (共著)

    Shohei Kaneda , Jiro Kawada, Marie Shinohara, Momoko Kumemura, Ryohei Ueno, Tomoaki, Kawamoto, Kenji Suzuki, Beomjoon Kim , Yoshiho Ikeuchi , Yasuyuki Sakai, Dominique Collard, Hiroyuki Fujita, and Teruo Fujii

    Biomicrofluidics  ( AIP Publishing )  13   054111   2019年10月  [査読有り]

    DOI

  • Optimization of Surface Treatment of MEMS Probes for Single-cell Capture and Release(共著)

    41. K. Hayashi,M. Kumemura, S. Kaneda, V. Menon, L. Jalabert, S. Tachikawa, M. C. Tarhan, T. Fujii, B.- J. Kim, H. Fujita

    Sensors and Materials  ( Myu Scientific Publishing )  31 ( 9 ) 2873 - 2881   2019年09月  [査読有り]

  • Elucidating the mechanism of the considerable mechanical stiffening of DNA induced by the couple Zn<sup>2+</sup>/Calix[4]arene-1,3-O-diphosphorous acid

    Tauran Y., Tarhan M., Mollet L., Gerves J., Kumemura M., Jalabert L., Lafitte N., Byun I., Kim B., Fujita H., Collard D., Perret F., Desbrosses M., Leonard D., Goutaudier C., Coleman A.

    Scientific Reports    8 ( 1 )   2018年12月  [査読有り]

     概要を見る

    © 2018 The Author(s). The couple Calix[4]arene-1,3-O-diphosphorous acid (C4diP) and zinc ions (Zn2+) acts as a synergistic DNA binder. Silicon NanoTweezer (SNT) measurements show an increase in the mechanical stiffness of DNA bundles by a factor of >150, at Zn2+ to C4diP ratios above 8, as compared to Zinc alone whereas C4diP alone decreases the stiffness of DNA. Electroanalytical measurements using 3D printed devices demonstrate a progression of events in the assembly of C4diP on DNA promoted by zinc ions. A mechanism at the molecular level can be deduced in which C4diP initially coordinates to DNA by phosphate-phosphate hydrogen bonds or in the presence of Zn2+ by Zn2+ bridging coordination of the phosphate groups. Then, at high ratios of Zn2+ to C4diP, interdigitated dimerization of C4diP is followed by cross coordination of DNA strands through Zn2+/C4diP inter-strand interaction. The sum of these interactions leads to strong stiffening of the DNA bundles and increased inter-strand binding.

    DOI Scopus

全件表示 >>

著書 【 表示 / 非表示

  • Silicon Nanotweezers for Molecules and Cells Manipulation and Characterization

    Collard D., Lafitte N., Guillou H., Kumemura M., Jalabert L., Fujita H. ( 共著 )

      2015年11月 ISBN: 9783527337842

     概要を見る

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. All rights reserved. In this chapter, Silicon Nanotweezer (SNT) is presented as a generic microdevice allowing bio-mechanical assays of filamentary molecules and cells. SNT operations and design are presented. The chapter explains the SNT microfabrication process; the operations and applications to molecules and cell characterization. Commonly integrated in microsystem designs, folded-beam springs are designed to minimize beams areas, decrease their mechanical stiffness, and enhance displacement ranges. In the current design, three sets of folded-beam suspensions support different parts of the system and provide the electrical connections for the actuation and sensing. In phenomenological models, the dynamic properties inform us on the stiffness and dissipation at the resonance frequency, whereas the static properties are related directly to the force. The monitoring of the resonance properties prevents any damage to the cell or to the SNT. To conclude, the silicon nanotweezers can be applied to handle various objects other than DNA molecules.

    Scopus

口頭発表・ポスター発表等 【 表示 / 非表示

  • MEMSを用いた単一細胞の機械特性計測

    井上敦貴, 久米村百子

    化学とマイクロ・ナノシステム学会第40回研究会  (静岡県浜松市アクトシティ浜松)  2019年11月  -  2019年11月    化学とマイクロ・ナノシステム学会