2022/06/22 更新

写真a

タナカ ユウイチロウ
田中 悠一朗
TANAKA Yuichiro
Scopus 論文情報  
総論文数: 0  総Citation: 0  h-index: 3

Citation Countは当該年に発表した論文の被引用数

所属
先端研究・社会連携本部 ニューロモルフィックAIハードウェア研究センター
職名
助教
メールアドレス
メールアドレス
研究室住所
福岡県北九州市若松区ひびきの2-4
外部リンク

研究分野

  • 情報通信 / 知能ロボティクス

  • 情報通信 / ソフトコンピューティング

出身学校

  • 2016年03月   九州工業大学   工学部   電気電子工学科   卒業   日本国

出身大学院

  • 2021年03月   九州工業大学   生命体工学研究科   生命体工学専攻   博士課程・博士後期課程   修了   日本国

  • 2018年03月   九州工業大学   生命体工学研究科   人間知能システム工学専攻   修士課程・博士前期課程   修了   日本国

取得学位

  • 九州工業大学  -  博士(工学)   2021年03月

  • 九州工業大学  -  修士(工学)   2018年03月

  • 九州工業大学  -  学士(工学)   2016年03月

学内職務経歴

  • 2022年04月 - 現在   九州工業大学   先端研究・社会連携本部   ニューロモルフィックAIハードウェア研究センター     助教

  • 2021年04月 - 2022年03月   九州工業大学   ニューロモルフィックAIハードウェア研究センター     助教

学外略歴

  • 2019年04月 - 2021年03月   独立行政法人日本学術振興会   日本学術振興会特別研究員   日本国

所属学会・委員会

  • 2019年05月 - 現在   日本神経回路学会   日本国

  • 2019年02月 - 現在   IEEE   アメリカ合衆国

論文

  • Reservoir computing in the matter based on electrochemical dynamics 査読有り 国際誌

    Usami Y, Tanaka Y, Tamukoh H, Matsumoto T, van der Wiel W, Tanaka H

    16th International Conference on Nanostructured Materials (NANO2022)   2022年06月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

  • Reservoir-based convolution 査読有り 国際誌

    Yuichiro Tanaka, Hakaru Tamukoh

    Nonlinear Theory and Its Applications, IEICE ( IEICE )   13 ( 2 )   397 - 402   2022年04月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    DOI: 10.1587/nolta.13.397

  • Applying Center Loss to Multidimensional Feature Space in Deep Neural Networks for Open-set Recognition 査読有り 国際誌

    Daiju Kanaoka, Yuichiro Tanaka, Hakaru Tamukoh

    17th International Conference on Computer Vision Theory and Applications (VISAPP2022)   5   359 - 365   2022年02月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    Kyutacar

  • Hardware-Oriented Algorithm for Human Detection using GMM-MRCoHOG Features 査読有り 国際誌

    Ryogo Takemoto, Yuya Nagamine, Kazuki Yoshihiro, Masatoshi Shibata, Hideo Yamada, Yuichiro Tanaka, Shuichi Enokida, Hakaru Tamukoh

    17th International Conference on Computer Vision Theory and Applications (VISAPP2022)   4   749 - 757   2022年02月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    Kyutacar

  • Reservoir-based Convolutional Neural Network 査読有り 国際誌

    Yuichiro Tanaka, Hakaru Tamukoh

    The 2021 NonLinear Science Workshop   NLSW-34   2021年12月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

  • In-Materio Reservoir Computing in a Sulfonated Polyaniline Network 査読有り

    Usami Y., van de Ven B., Mathew D.G., Chen T., Kotooka T., Kawashima Y., Tanaka Y., Otsuka Y., Ohoyama H., Tamukoh H., Tanaka H., van der Wiel W.G., Matsumoto T.

    Advanced Materials   2021年01月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)

    A sulfonated polyaniline (SPAN) organic electrochemical network device (OEND) is fabricated using a simple drop-casting method on multiple Au electrodes for use in reservoir computing (RC). The SPAN network has humidity-dependent electrical properties. Under high humidity, the SPAN OEND exhibits mainly ionic conduction, including charging of an electric double layer and ionic diffusion. The nonlinearity and hysteresis of the current–voltage characteristics progressively increase with increasing humidity. The rich dynamic output behavior indicates wide variations for each electrode, which improves the RC performance because of the disordered network. For RC, waveform generation and short-term memory tasks are realized by a linear combination of outputs. The waveform task accuracy and memory capacity calculated from a short-term memory task reach 90% and 33.9, respectively. Improved spoken-digit classification is realized with 60% accuracy by only 12 outputs, demonstrating that the SPAN OEND can manage time series dynamic data operation in RC owing to a combination of rich dynamic and nonlinear electronic properties. The results suggest that SPAN-based electrochemical systems can be applied for material-based computing, by exploiting their intrinsic physicochemical behavior.

    DOI: 10.1002/adma.202102688

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85114995164&origin=inward

  • Open Set Recognition Using the Feature Space of Deep Neural Networks 査読有り

    Kanaoka D., Tanaka Y., Tamukoh H.

    ISPACS 2021 - International Symposium on Intelligent Signal Processing and Communication Systems: 5G Dream to Reality, Proceeding   2021年01月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    Image classification assumes that all classes used in testing are known. Therefore, when an unknown class data is input, it cannot be recognized correctly. A method that enables unknown classes to be identified is called open set recognition. In this paper, we propose a method of open set recognition focusing on the feature space of the classifier and a Mahalanobis-based threshold. The experimental results show that the proposed method surpasses state-of-the-art methods on some datasets, demonstrating the potential of a method focusing on the feature space.

    DOI: 10.1109/ISPACS51563.2021.9650985

    Kyutacar

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124169792&origin=inward

  • Brain-inspired neural network navigation system with hippocampus, prefrontal cortex, and amygdala functions 査読有り

    Mizutani A., Tanaka Y., Tamukoh H., Katori Y., Tateno K., Morie T.

    ISPACS 2021 - International Symposium on Intelligent Signal Processing and Communication Systems: 5G Dream to Reality, Proceeding   2021年01月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    We propose a brain-inspired neural network model consisting of the hippocampus, prefrontal cortex, and amygdala models for a navigation system that acquires specific knowledge in home environments from few experiences. The proposed model was evaluated in a home environment using a robot simulator. In the experiment, the robot determines a path for navigation based on the knowledge acquired by the brain-inspired model.

    DOI: 10.1109/ISPACS51563.2021.9651058

    Kyutacar

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124147021&origin=inward

  • An Amygdala-Inspired Classical Conditioning Model Implemented on an FPGA for Home Service Robots 査読有り

    Tanaka Y., Morie T., Tamukoh H.

    IEEE Access   8   212066 - 212078   2020年11月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)

    This study develops an intelligent system for home service robots mimicking human brain function that can manage common knowledge applicable to any environment and local knowledge reflecting its specific environment. Deep learning is effective for acquiring common knowledge because the performance of deep learning relies on the amounts of training and big training data that can be accessed for such knowledge; however, deep learning is ineffective for acquiring local knowledge because no big training data for such knowledge exist. Thus, we propose a brain-inspired learning model and system for acquiring local knowledge using small training data. We focus on the amygdala because its classical fear conditioning is effective for training using small training data. We propose an amygdala-inspired classical conditioning model comprising multiple self-organizing maps (lateral nucleus) and a fully connected neural network (central nucleus), imitating the function and structure of the amygdala. The proposed model is applied to a task of a waiter robot in a restaurant, and the model can learn customers' preferences after only a few human-robot interactions. We accelerate the computation of the model and reduce its power consumption by proposing a hardware-oriented algorithm for the model and its digital hardware design and implement it in an XCZU9EG field programmable gate array. The hardware-oriented algorithm reduces the multiplication operations and exponential functions requiring huge hardware resources. The performance of the hardware operated at 150 MHz is 1,273 times faster than the software implementation on Arm Cortex-A53, and the power consumption of the chip is 5.009 W.

    DOI: 10.1109/ACCESS.2020.3038161

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097712435&origin=inward

  • Object Recognition Using Flexible Tactile Sensor 査読有り

    Shoshi Tokuno, Yuichiro Tanaka, Takumi Kawasetsu, Koh Hosoda, Hakaru Tamukoh

    Asia Pacific Conference on Robot IoT System Development and Platform 2020   2020年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

  • A Reservoir Based Q-learning Model for Autonomous Mobile Robots 査読有り

    Masafumi Inada, Yuichiro Tanaka, Hakaru Tamukoh, Katsumi Tateno, Takashi Morie, Yuichi Katori

    2020 International Symposium on Nonlinear Theory and Its Applications   213 - 216   2020年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

  • A Brain-inspired Artificial Intelligence Model of Hippocampus, Amygdala, and Prefrontal Cortex on Home Service Robots 査読有り

    Yuichiro Tanaka, Hakaru Tamukoh, Katsumi Tateno, Yuichi Katori, Takashi Morie

    2020 International Symposium on Nonlinear Theory and Its Applications   138 - 141   2020年11月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

  • Prediction of Sensory Information and Generation of Motor Commands for Autonomous Mobile Robots using Reservoir Computing 査読有り

    Masafumi Inada, Yuichiro Tanaka, Hakaru Tamukoh, Katsumi Tateno, Takashi Morie, Yuichi Katori

    2019 International Symposium on Nonlinear Theory and Its Applications   333 - 336   2019年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

  • 社会実装を目指したホームサービスロボットの研究開発

    小野 智寛, 坂田 拓馬, 吉井 拓巳, 上村 大地, 金丸 和樹, 中村 健太郎, 西村 雄太, 森江 隆, 田向 権, 堀 三晟, 石田 裕太郎, 田中 悠一朗, 吉元 裕真, 阿部 佑志, 武藤 冬樹, 椛島 康平, 福宿 将士

    ロボティクス・メカトロニクス講演会講演概要集 ( 一般社団法人 日本機械学会 )   2019 ( 0 )   1P2 - I02   2019年06月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(研究会,シンポジウム資料等)

    <p>Home service robots have begun attracting attention due to decreasing birthrate and increasing aging population. We,"Hibikino-Musashi@Home"team, develop home service robots, and participate international competitions; RoboCup@Home and World Robot Challenge (WRC), which are established to realize that robots will work and live with people in domestic environments. In this paper, we introduce our robots and technologies, especially an object recognition and manipulation system. We use You Only Look Once (YOLO) for object recognition. To train YOLO, a big dataset which is difficult to prepare in a short term is required. For this, we develop an automatic annotation system for YOLO which can generate 1.7 million training data, and we can complete training of YOLO in a day. To grasp objects, estimation of object orientations is required. Our system can detect the orientations by processing point clouds of objects. By using the system, we obtained about 30% of scores in Tidy Up Task in the WRC.</p>

    DOI: 10.1299/jsmermd.2019.1P2-I02

    CiNii Article

    その他リンク: https://ci.nii.ac.jp/naid/130007774525

  • Hardware implementation of brain-inspired amygdala model 査読有り

    Tanaka Y., Tamukoh H.

    Proceedings - IEEE International Symposium on Circuits and Systems   2019-May   2019年01月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    Deep neural networks (DNNs) have achieved state-of-the-art results in several computing tasks. However, the performance of these DNNs is reliant on the availability of large amounts of training data, which is not always present. We approached this problem by developing a brain-inspired amygdala model to achieve computer learning based on limited training data. The amygdala is an area of the brain associated with classical fear conditioning. The proposed amygdala model is composed of a single layer of deep self-organizing map network (deep SOM network) and a fully-connected neural network (FCNN), which imitates the function and structure of an amygdala. We applied the proposed amygdala model to a robot waiter task in a restaurant. The experimental results show that the model learned a customer's preferences after only a few human robot interactions. To develop the digital hardware of the amygdala model, we designed hardware for the deep SOM network and the FCNN and implemented them in an XCZU9EG field programmable gate array (FPGA). Our FPGA implementation of a deep SOM network with 272 neurons and an FCNN with three output neurons outperformed a software implementation on an Intel Core i5-3470 CPU by over 600 times.

    DOI: 10.1109/ISCAS.2019.8702430

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066804926&origin=inward

  • Live demonstration: A VLSI implementation of time-domain analog weighted-sum calculation model for intelligent processing on robots 査読有り

    Yamaguchi M., Iwamoto G., Abe Y., Tanaka Y., Ishida Y., Tamukoh H., Morie T.

    Proceedings - IEEE International Symposium on Circuits and Systems   2019-May   2019年01月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    This live demonstration presents a VLSI chip based on “Time-domain Analog Computing with Transient states (TACT)” approach for intelligent processing on robots. This TACT chip, fabricated using 250-nm CMOS technology, implements a time-domain analog weighted-sum calculation model with very high energy efficiency. We integrate the TACT chip into a robot via Robot Operating System (ROS) interfaces. A human tracking robot demonstration is performed by the TACT chip with energy efficiency of 300 TOPS/W.

    DOI: 10.1109/ISCAS.2019.8702222

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066803614&origin=inward

  • Live demonstration: Hardware implementation of brain-inspired amygdala model 査読有り

    Tanaka Y., Tamukoh H.

    Proceedings - IEEE International Symposium on Circuits and Systems   2019-May   2019年01月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    This live demonstration presents a brain-inspired amygdala model. Amygdala is an area of the brain that is associated with fear conditioning, which is a type of classical conditioning. The model can learn preferences through human-robot interactions by application of classical conditioning to the model. Additionally, to develop a high speed and low power system, we design a hardware of the amygdala model, and implemented the hardware into field programmable gate array.

    DOI: 10.1109/ISCAS.2019.8702213

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066814574&origin=inward

  • Application of digital hardware of deep self-organizing map network 査読有り

    Yuichiro Tanaka, Hakaru Tamukoh

    Asia Pacific Conference on Robot IoT System Development and Platform 2018   2018年10月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

  • 競技会活動を通じたホームサービスロボットの研究開発

    吉元 裕真, 岩元 剛毅, 橋本 康平, 森江 隆, 田向 権, 堀 三晟, 石田 裕太郎, 木山 雄太, 黒田 裕貴, 田中 悠一朗, 久野 昌隆, 藤田 啓斗, 新谷 嘉也

    ロボティクス・メカトロニクス講演会講演概要集 ( 一般社団法人 日本機械学会 )   2018 ( 0 )   2P2 - E02   2018年06月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(研究会,シンポジウム資料等)

    <p>In real world applications of home service robots, they are required to be able to perform housekeeping or other tasks. "RoboCup@Home" is a competition for benchmarking home service robots. It includes tests to service robots for real world implementation. These tests require the combination of intelligent functions such as object detection and voice recognition. We have developed a home service robot "Exi@" and evaluated its performance by participating in RoboCup@Home. This paper describes real world implementation of robots and RoboCup@Home. The functions embedded in Exi@ and a task "Restaurant" are also explained.</p>

    DOI: 10.1299/jsmermd.2018.2P2-E02

    CiNii Article

    その他リンク: https://ci.nii.ac.jp/naid/130007552042

  • Hardware implementation of deep self-organizing map networks 査読有り

    Tanaka Y., Tamukoh H.

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   10613 LNCS   439 - 441   2017年09月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

    We aim to develop a recognition system of high accuracy and low power consumption by designing a digital circuit for deep neural networks (DNNs), and by implementing the circuit on field programmable gate arrays (FPGAs). DNNs include numerous multiply operations, whereas FPGAs include a limited number of multipliers. We aim to reduce the number of multiply operations generated by the algorithms within DNNs. Deep self-organizing map networks (DSNs) [1] are DNNs comprising self-organizing maps (SOMs) [2] as shown in Fig. 1. A hardware-oriented algorithm for SOMs has been proposed herein [3]. The algorithm represents SOMs by replacing multiply operations with bitshift operations. DSNs that include only a few multiply operations can then be represented by employing the algorithm. In this paper, we propose a hardware-oriented algorithm and a hardware architecture for DSNs. The hardware-oriented algorithm reduces multiply operations and exponential functions in a computation of SOM Module as shown in Fig. 1. In addition, we confirm that the algorithm does not worsen performance of DSN by a software simulation. Figure 2 shows error rates of DSN during learning MNIST Dataset [4]. The performance of the proposed algorithm achieve comparable results to the conventional algorithm. We also describe a DSN comprising three layers by Verilog-HDL as shown in Fig. 1, and implement it on a Xilinx Vertex-6 XC6VLX240T FPGA. Experimental results showed that the proposed DSN circuit estimates a label of an input image in 2 µs while the software implemented using an Intel Core i5-3470 (3.20 GHz) CPU estimates it in about 1 ms. Thus the hardware is 500 times faster than the software. Its logic utilization is shown in Table 1.

    Scopus

    その他リンク: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85034254406&origin=inward

  • Hardware-Oriented Algorithm for Deep Neural Networks Composed of Self-Organizing Maps 査読有り

    Yuichiro Tanaka, Hakaru Tamukoh

    Proceedings of International Workshop on Smart Info-Media Systems in Asia   116 - 121   2016年09月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)

▼全件表示

著書

  • 高位合成によるFPGA回路設計

    長瀬雅之 (共著),岩渕甲誠 (共著),田中亮佑 (共著),川口敦史 (共著),松本茂樹 (共著),梶原信樹 (共著),田中悠一朗 (共著),田向権 (共著)(共著)

    森北出版  2022年02月  ( ISBN:978-4-627-78741-4

     詳細を見る

    記述言語:日本語

口頭発表・ポスター発表等

  • 電気化学ダイナミクスリザバーを用いた分類用データ拡張

    宇佐美 雄生,田中 悠一朗,琴岡 匠,田向 権,田中 啓文

    第83回応用物理学会秋季学術講演会 

     詳細を見る

    開催期間: 2022年09月20日 - 2022年09月23日   記述言語:日本語   開催地:東北大学川内北キャンパス   国名:日本国  

  • レザバー計算による組込み指向型音声分類システム

    田中悠一朗, 内野壱星, 大栗一敦, 田向権

    電子情報通信学会スマートインフォメディアシステム研究会 

     詳細を見る

    開催期間: 2022年06月09日 - 2022年06月10日   記述言語:日本語  

  • 電気化学ダイナミクスを用いたインマテリオリザバーによる音声分類

    宇佐美 雄生, 田中 悠一朗, 田向 権, ファンデルヴィエール ウィルフレッド, 松本 卓也, 田中 啓文

    第69回応用物理学会春季学術講演会 

     詳細を見る

    開催期間: 2022年03月22日 - 2022年03月26日   記述言語:日本語  

  • Ag2SeとAg2Sナノワイヤネットワーク物理デバイスの性能比較

    琴岡 匠, Lilak Sam, Stieg A. Z., Gimzewski J. K., 田中 悠一朗, 田向 権, 宇佐美 雄生, 田中 啓文

    第69回応用物理学会春季学術講演会 

     詳細を見る

    開催期間: 2022年03月22日 - 2022年03月26日   記述言語:日本語  

  • A Memory-based LSI Architecture for Entorhinal-hippocampal Model

    Osamu Nomura, Ichiro Kawashima, Seiji Uenohara, Yuichiro Tanaka, Akinobu Mizutani, Kensuke Takada, Katsumi Tateno, Hakaru Tamukoh, Takashi Morie

    The 3rd International Symposium on Neuromorphic AI Hardware 

     詳細を見る

    開催期間: 2022年03月18日 - 2022年03月19日   記述言語:英語  

  • Memory-based Action Planning Inspired by Hippocampal Replay

    Akinobu Mizutani, Yuichiro Tanaka, Ichiro Kawashima, Hakaru Tamukoh, Katsumi Tateno, Takashi Morie

    The 3rd International Symposium on Neuromorphic AI Hardware 

     詳細を見る

    開催期間: 2022年03月18日 - 2022年03月19日   記述言語:英語  

  • A situation-dependent navigation system by brain-inspired neural networks with hippocampus, prefrontal cortex, and amygdala functions

    Akinobu Mizutani, Yuichiro Tanaka, Hakaru Tamukoh, Yuichi Katori, Katsumi Tateno, Takashi Morie

    The 10th RIEC International Symposium on Brain Functions and Brain Computer 

     詳細を見る

    開催期間: 2022年02月18日 - 2022年02月19日   記述言語:英語  

  • A Data Collection System for Home Environment Adaptation of Service Robots

    Akinobu Mizutani, Yuichiro Tanaka, Hakaru Tamukoh

    9th International Symposium on Applied Engineering and Science 

     詳細を見る

    開催期間: 2021年12月05日 - 2021年12月08日   記述言語:英語  

  • Open Set Recognition Using Hotelling’s T2 Focusing on Multidimensional Feature Space in Deep Neural Networks

    Daiju Kanaoka, Yuichiro Tanaka, Hakaru Tamukoh

    9th International Symposium on Applied Engineering and Science 

     詳細を見る

    開催期間: 2021年12月05日 - 2021年12月08日   記述言語:英語  

  • 多次元特徴空間に着目したオープンセット認識手法の開発

    金岡大樹,田中悠一朗,田向権

    電子情報通信学会スマートインフォメディアシステム研究会 

     詳細を見る

    開催期間: 2021年12月03日   記述言語:日本語  

  • Ag2Seナノワイヤネットワークリザバーデバイスを用いた音声分類

    琴岡 匠,Lilak Sam,Stieg A. Z.,Gimzewski J. K.,田中 悠一朗,田向 権,宇佐美 雄生,田中 啓文

    第82回応用物理学会秋季学術講演会 

     詳細を見る

    開催期間: 2021年09月10日 - 2021年09月13日   記述言語:日本語  

  • 軟接触センサを搭載したロボットハンドを用いたアクティブセンシングによる物体認識

    徳野 将士,田中 悠一朗,川節 拓実,細田 耕,田向 権

    第39回日本ロボット学会学術講演会 

     詳細を見る

    開催期間: 2021年09月08日 - 2021年09月11日   記述言語:日本語   開催地:オンライン   国名:日本国  

  • Ag2Seナノワイヤネットワーク物理リザバーデバイスを用いた音声分類

    琴岡 匠, Lilak Samuel, Stieg A. Z., Gimzewski J. K., 田中 悠一朗, 田向 権, 宇佐美 雄生, 田中 啓文

    第68回応用物理学会春季学術講演会 

     詳細を見る

    開催期間: 2021年03月16日 - 2021年03月19日   記述言語:日本語  

  • Analysis of Tactile Information Acquired by a Flexible Sensor

    Issei Uchino, Shoshi Tokuno, Yuichiro Tanaka, Hakaru Tamukoh

    8th International Symposium on Applied Engineering and Science 

     詳細を見る

    開催期間: 2020年12月12日 - 2020年12月19日   記述言語:英語  

  • Object Recognition by a Robot Hand Mounting Flexible Tactile Sensor

    Shoshi Tokuno, Yuichiro Tanaka, Takumi Kawasetsu, Koh Hosoda, Hakaru Tamukoh

    8th International Symposium on Applied Engineering and Science 

     詳細を見る

    開催期間: 2020年12月12日 - 2020年12月19日   記述言語:英語  

  • 柔軟触覚センサを搭載したロボットハンドによる触覚情報からの物体認識

    徳野 将士,田中 悠一朗,川節 拓実,細田 耕,田向 権

    第38回日本ロボット学会学術講演会 

     詳細を見る

    開催期間: 2020年10月   記述言語:日本語  

  • 海馬・扁桃体・前頭前野の機能を統合した脳型人工知能モデル

    田中 悠一朗,田向 権,立野 勝巳,香取 勇一,森江 隆

    第29回日本神経回路学会全国大会 

     詳細を見る

    開催期間: 2019年09月04日 - 2019年09月06日   記述言語:日本語  

  • ヒューマンロボットインタラクションを通じて人の好みを学習する扁桃体モデルの実装

    田中 悠一朗,田向 権

    第36回日本ロボット学会学術講演会 

     詳細を見る

    開催期間: 2018年09月   記述言語:日本語  

  • スマートフォンのカメラで計測した脈波を用いた心拍変動パラメータの推定

    田中 悠一朗,鈴木 章央,磯貝 浩久,岩崎 正明,田向 権

    電子情報通信学会スマートインフォメディアシステム研究会 

     詳細を見る

    開催期間: 2018年06月   記述言語:日本語  

  • Approach to accelerate the development of practical home service robots –RoboCup@Home DSPL- 招待有り

    Yutaro Ishida, Yuichiro Tanaka, Sansei Hori, Yuta Kiyama, Yuki Kuroda, Masataka Hisano, Hiroto Fujita, Yuma Yoshimoto, Yoshiya Aratani, Gouki Iwamoto, Kouhei Hashimoto, Dinda Pramanta, Yushi Abe, Takashi Morie, Hakaru Tamukoh

    26th International Symposium on Robot and Human Interactive Communication 

     詳細を見る

    開催期間: 2017年09月   記述言語:英語  

  • Deep Self-Organizing Map NetworksのFPGA実装

    田中悠一朗,田向権

    第27回日本神経回路学会全国大会 

     詳細を見る

    開催期間: 2017年09月   記述言語:日本語  

  • 自己組織化マップによって構成されるディープニューラルネットワークのハードウェア化

    田中 悠一朗,田向 権

    電子情報通信学会技術研究報告スマートインフォメディアシステム研究会 

     詳細を見る

    開催期間: 2017年03月   記述言語:日本語  

  • ホームロボット向け物体認識・把持システムの構築

    石田 裕太郎,田中 悠一朗,森江 隆,田向 権

    第34回日本ロボット学会学術講演会 

     詳細を見る

    開催期間: 2016年09月   記述言語:日本語  

  • 自己組織化マップを応用したDeep Neural Networkのハードウェア指向アルゴリズム

    田中 悠一朗,田向 権

    電子情報通信学会2016年総合大会ISS特別企画「学生ポスターセッション」 

     詳細を見る

    開催期間: 2016年03月   記述言語:日本語  

  • hw/sw複合体による高速画像認識システム

    田中 悠一朗,田向 権

    日本知能情報ファジィ学会九州支部春季ワークショップ2015 

     詳細を見る

    開催期間: 2015年06月   記述言語:日本語  

▼全件表示

工業所有権

  • 情報処理装置、情報処理方法、及びプログラム

    田中悠一朗,田向権

     詳細を見る

    出願番号:特願2021-202492  出願日:2021年12月14日

  • 画像認識装置及び画像認識方法

    金岡大樹,田向権,田中悠一朗

     詳細を見る

    出願番号:特願2021-185971   出願日:2021年11月15日

  • 情報処理装置、及び情報処理方法

    田中悠一朗,田向権,内野壱星

     詳細を見る

    出願番号:2021-007422  出願日:2021年01月20日

  • 情報処理装置、及び情報処理方法

    田中悠一朗,田向権,内野壱星

     詳細を見る

    出願番号:2021-007423  出願日:2021年01月20日

講演

  • マルチタスク学習を達成するレザバーコンピューティングの構成と学習法

    九州工業大学 新技術説明会  2021年12月  科学技術振興機構、九州工業大学

     詳細を見る

    発表言語:日本語   講演種別:その他  

  • 海馬・扁桃体・前頭前野の機能を統合した脳型AIハードウェア

    第82回応用物理学会秋季学術講演会シンポジウム AIアクセラレータ -人工知能デバイスの新展開-  2021年09月 

     詳細を見る

    発表言語:日本語   講演種別:招待講演  

  • ホームサービスロボット実現に向けた取り組み

    北九州プロバスクラブ  2019年03月 

     詳細を見る

    発表言語:日本語   講演種別:座談会  

  • Approach to accelerate the development of practical home service robots –RoboCup@Home DSPL-

    26th International Symposium on Robot and Human Interactive Communication  2017年09月 

     詳細を見る

    発表言語:英語   講演種別:招待講演  

学術関係受賞

  • Open Platform League Technical Challenge優勝

    ロボカップジャパンオープン2021@ホームリーグ実行委員会   2022年03月23日

    Hibikino-Musashi@Home OPL

     詳細を見る

    受賞国:日本国

  • Open Platform League準優勝

    ロボカップジャパンオープン2021@ホームリーグ実行委員会   2022年03月23日

    Hibikino-Musashi@Home OPL

     詳細を見る

    受賞国:日本国

  • Domestic Standard Platform League優勝

    ロボカップジャパンオープン2021@ホームリーグ実行委員会   2022年03月12日

    Hibikino-Musashi@Home DSPL

     詳細を見る

    受賞国:日本国

  • Domestic Standard Platform League Technical Challenge優勝

    ロボカップジャパンオープン2022@Homeリーグ実行委員会   2022年03月12日

    Hibikino-Musashi@Home DSPL

     詳細を見る

    受賞国:日本国

  • 2021年IEEE福岡支部学生研究奨励賞

    IEEE   An Amygdala-Inspired Classical Conditioning Model Implemented on an FPGA for Home Service Robots   2022年02月

    田中悠一朗

     詳細を見る

    受賞国:日本国

  • RoboCup Asia-Pacific 2021 Aichi Japan @Home Open Platform League 1st Place

    RoboCup Asia-Pacific @Home League   2021年11月

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup Asia-Pacific 2021 Aichi Japan @Home Open Platform League 1st Place

    RoboCup Asia-Pacific 2021 Aichi Organizing Committee   2021年11月

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • Best Student Paper Award

    ISPACS2021   2021年11月

    Akinobu Mizutani, Yuichiro Tanaka, Hakaru Tamukoh, Yuichi Katori, Katsumi Tateno, Takashi Morie

     詳細を見る

    受賞国:台湾

  • RoboCup Asia-Pacific 2021 Aichi Japan @Home Open Platform League (Technical Challenge) 3rd Place

    RoboCup Asia-Pacific @Home League   2021年11月

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup Asia-Pacific 2021 Aichi Japan @Home Domestic Standard Platform League 1st Place

    RoboCup Asia-Pacific @Home League   2021年11月

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup Asia-Pacific 2021 Aichi Japan @Home Domestic Standard Platform League (Technical Challenge) 1st Place

    RoboCup Asia-Pacific @Home League   2021年11月

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup Asia-Pacific 2021 Aichi Japan @Home Domestic Standard Platform League (Tidy Up Award) 1st Place

    RoboCup Asia-Pacific @Home League   2021年11月

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup Asia-Pacific 2021 Aichi Japan @Home Simulation DSPL 1st Place

    RoboCup Asia-Pacific @Home League   2021年11月

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup Asia-Pacific 2021 Aichi Japan @Home Domestic Standard Platform League 1st Place

    RoboCup Asia-Pacific 2021 Aichi Organizing Committee   2021年11月

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • 最優秀賞

    令和2年度学生プロジェクト報告会   2021年03月05日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • ロボカップジャパンオープン2020 @ホームシミュレーションリーグ 準優勝(Technical Challenge)

    ロボカップジャパンオープン2020開催委員会   2020年11月01日

    Hibikino-Musashi@Home Sim

     詳細を見る

    受賞国:日本国

  • ロボカップジャパンオープン2020 @ホームシミュレーションリーグ 準優勝(Technical Challenge)

    ロボカップジャパンオープン2020@ホームリーグ実行委員会   2020年11月01日

    Hibikino-Musashi@Home Sim

     詳細を見る

    受賞国:日本国

  • NOLTA2020 Student Paper Award

    NOLTA2020   2020年11月

    Yuichiro Tanaka

     詳細を見る

    受賞国:日本国

  • 最優秀賞

    令和元年度学生プロジェクト報告会   2020年02月28日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • 優勝(DSPL)

    ロボカップジャパンオープン2019@ホームリーグ実行委員会   2019年08月18日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • ロボカップジャパンオープン2019ながおか @ホーム・ドメスティックスタンダードプラットフォームリーグ優勝

    ロボカップジャパンオープン2019ながおか開催委員会   2019年08月18日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup@Home League Domestic Standard Platform Third Place

    RoboCup 2019 Sydney   2019年07月07日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:オーストラリア連邦

  • Best Live Demonstration Award

    IEEE International Symposium on Circuit and Systems   2019年05月28日

    Masatoshi Yamaguchi, Gouki Iwamoto, Yushi Abe, Yuichiro Tanaka, Yutaro Ishida, Hakaru Tamukoh, Takashi Morie

     詳細を見る

    受賞国:日本国

  • 準優勝 日本シノプシス合同会社賞

    LSIデザインコンテスト2019   2019年03月08日

    川島 一郎,田中 悠一朗,宮﨑 椋瑚

     詳細を見る

    受賞国:日本国

  • 最優秀賞

    平成30年度学生プロジェクト報告会   2019年03月01日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • Fighting-spirit award

    APRIS Robot Challenge 2018   2018年11月02日

    Thanin Limkulpong, Anwar Rajawana, Yuichiro Tanaka, Piyapat Wunbunchoo, Arsanchai Sukkuea

     詳細を見る

    受賞国:タイ王国

  • World Robot Summit 2018 Tokyo Service Robotics Category, Partner Robot Challenge / Real Space 1st Place, METI Minister’s Award for Excellence in WRS

    経済産業省   2018年10月21日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • World Robot Summit 2018 Tokyo RSJ Special Award

    日本ロボット学会   2018年10月21日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup@Home League Domestic Standard Platform RoboCup@Home First Place

    RoboCup 2018   2018年06月21日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:カナダ

  • RoboCup@Home P&G Challenge Winner

    Procter & Gamble   2018年06月21日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:カナダ

  • RoboCup@Home League Procter & Gamble Dishwasher Challenge Award

    RoboCup 2018   2018年06月21日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:カナダ

  • RoboCup@Home League Domestic Standard Platform 1st Place

    RoboCup 2017   2017年06月30日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • ロボカップジャパンオープン2017@Home Open Platform 三位

    ロボカップジャパンオープン2017@Homeリーグ実行委員会   2017年05月05日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup@Home Domestic Standard Platform 第2位

    ロボカップジャパンオープン2017開催委員会   2017年05月05日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • RoboCup@Home Open Platform 第3位

    ロボカップジャパンオープン2017開催委員会   2017年05月05日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • ロボカップジャパンオープン2017@Home Domestic Standard Platform 準優勝

    ロボカップジャパンオープン2017@Homeリーグ実行委員会   2017年05月05日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • Intelligent Home Robotics Challenge 2016 ロボット聴覚部門1位

    日本ロボット学会インテリジェントホームロボティクス研究専門委員会   2016年12月11日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • Intelligent Home Robotics Challenge 2016 総合優勝

    日本ロボット学会インテリジェントホームロボティクス研究専門委員会   2016年12月11日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • Intelligent Home Robotics Challenge 2016 ロボットマニピュレーション部門1位

    日本ロボット学会インテリジェントホームロボティクス研究専門委員会   2016年12月11日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • ロボカップジャパンオープン2016@Home Open Platform 準優勝

    ロボカップジャパンオープン2016@Homeリーグ実行委員会   2016年03月27日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • ロボカップ@ホームオープンプラットフォームリーグ準優勝

    ロボカップジャパンオープン2016愛知開催委員会   2016年03月27日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • ボカップ@ホームオープンプラットフォームリーグファイナリスト賞

    ロボカップジャパンオープン2016愛知開催委員会   2016年03月27日

    Hibikino-Musashi@Home

     詳細を見る

    受賞国:日本国

  • 電子情報通信学会 九州支部 平成27年度 成績優秀賞(学部)

    電子情報通信学会九州支部   2016年03月

    田中 悠一朗

     詳細を見る

    受賞国:日本国

▼全件表示

科研費獲得実績

  • 脳の機能を模倣した汎用型AIハードウェア開発と家庭用サービスロボット応用

    研究課題番号:22K17968  2022年04月 - 2027年03月   若手研究

  • 組込み指向型脳型人工知能回路の実現とサービスロボットへの応用

    研究課題番号:19J11524  2019年04月 - 2021年03月   特別研究員奨励費

学会・委員会等活動

  • ロボカップジャパンオープン2021   @ホームオープンプラットフォームリーグ実行委員  

    2022年03月

  • ロボカップジャパンオープン2021   @ホームエデュケーションリーグ審査委員  

    2022年03月

  • ロボカップジャパンオープン2021   @ホームドメスティックスタンダードプラットフォームリーグ実行委員  

    2022年03月

  • ロボカップアジアパシフィック2021あいち   @ホームドメスティックスタンダードプラットフォームリーグ実行委員  

    2021年11月

  • Elsevier   Reviewer of Neural Networks  

    2021年06月 - 2021年09月

国際会議開催(学会主催除く)

  • The 3rd International Symposium on Neuromorphic AI Hardware

    Society of Neurumorphic AI Hardware, Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Kitakyushu Convention & Visitors Association  プレミアホテル門司港  2022年03月18日 - 2022年03月19日