HARUYAMA Tetsuya

写真a

Title

Professor

Laboratory

2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka

Research Fields, Keywords

Degree 【 display / non-display

  • Tokyo Institute of Technology -  Doctor of Engineering  1993.03

Biography in Kyutech 【 display / non-display

  • 2014.04
    -
    Now

    Kyushu Institute of TechnologyGraduate School of Life Science and Systems Engineering   Department of Biological Functions Engineering   Professor  

  • 2013.10
    -
    Now

    Kyushu Institute of Technology

  • 2013.05
    -
    Now

    Kyushu Institute of Technology

  • 2010.04
    -
    Now

    Kyushu Institute of Technology

  • 2007.04
    -
    2018.03

    Kyushu Institute of TechnologyReseach Center for Advanced Eco-fitting Technology  

display all >>

Biography before Kyutech 【 display / non-display

  • 2019.04
    -
    2020.03

      Professor   JAPAN

  • 2002.04
    -
    Now

      Visiting Professor   UNITED KINGDOM

Academic Society Memberships 【 display / non-display

  • 2003.04
    -
    Now
     

    The Electrochemical Society  UNITED STATES

  • 2003.04
    -
    Now
     

    The Chemical Society of Japan  JAPAN

  • 2003.04
    -
    Now
     

    The Electrochemical Society of Japany  JAPAN

  • 2002.04
    -
    Now
     

    The Society of Non-Traditional Technology  JAPAN

Specialized Field (scientific research fund) 【 display / non-display

  • Biofunction/Bioprocess

  • Nanomaterials chemistry

 

Publications (Article) 【 display / non-display

  • Contribution of discharge excited atomic N, N2*, and N2+ to a plasma/liquid interfacial reaction as suggested by quantitative analysis.

      20   1467 - 1474   2019.09  [Refereed]

    DOI

  • Highly Selective Methane Production Through Electrochemical CO<inf>2</inf> reduction by Electrolytically Plated Cu-Co Electrode

      10 ( 1 ) 29 - 34   2019.01  [Refereed]

     View Summary

    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Among the electrode materials used for electrolytic CO2 reduction, only Cu shows a special function of producing not only carbon monoxide (CO), but also hydrocarbons from CO2. We found that, in electrolytic CO2 reduction using an electrolytically plated Cu-Co electrode, a hydrocarbon product with high faradaic efficiency (FE) could be obtained with low-FE CO. The plated electrodes have a Co solid solution on the Cu surface. The non-localized Co changes the adsorption energy of the reaction intermediate in CO2 reduction. Consequently, by increasing the Co content in Cu, HCOOH can be selectively produced. Further, in electrolytic CO2 reduction with an applied potential of − 1.19 V vs. reversible hydrogen electrode (RHE), the selectivity of methane (CH4) production improved, while the selectivity of ethylene (C2H4) formation lowered. In the reduction using the plated electrode containing 14% Co, the FE of CH4 production reached the highest at 47.7%. These results suggested that mixing Co in Cu promotes the hydrogenation of CH2* to CH3* and inhibits the dimerization of CH2* species. Furthermore, this research on plated electrodes is useful for the development of catalytic electrodes for electrolytic CO2 reduction. [Figure not available: see fulltext.]

    DOI Scopus

  • Experimental and Theoretical Elucidation of Electrochemical CO <inf>2</inf> Reduction on an Electrodeposited Cu <inf>3</inf> Sn Alloy

        2019.01  [Refereed]

     View Summary

    © 2019 American Chemical Society. The reaction selectivity of an electrode catalyst can be modulated by regulating its crystal structure, and the modified electrode may show different CO 2 reduction selectivity from that of its constituent metal. In this study, we investigated the mechanisms of the electrochemical CO 2 reduction on an electrodeposited Cu 3 Sn alloy by experimental and theoretical analyses. The electrodeposited Cu 3 Sn alloy electrode showed selectivity for CO production at all the applied potentials, and HCOOH production increased with an increase in the applied potential. In particular, hydrocarbon generation was well suppressed on Cu 3 Sn(002). To understand this selectivity change in electrochemical CO 2 reduction, we conducted density functional theory calculations for the reaction on the Cu 3 Sn(002) surface. According to the theoretical analysis, the Cu sites in Cu 3 Sn(002) contributed more to the stabilization of H, COOH, and CO∗ as compared with the Sn sites. Furthermore, the results indicated that Cu 3 Sn(002) decreased the surface coverage of reaction intermediates such as H, COOH, and CO. We believe that these effects promoted CO∗ desorption while suppressing H 2 generation, CO∗ protonation, and C-C bond formation. The results also suggested that the surface Sn concentration significantly affected the reaction selectivity for HCOOH production from CO 2 .

    DOI Scopus

  • Visualization of catalytic edge reactivity in electrochemical CO<inf>2</inf> reduction on porous Zn electrode

      290   255 - 261   2018.11  [Refereed]

     View Summary

    © 2018 Elsevier Ltd In the study, the catalytic edge reactivity on porous Zn electrode has successfully visualized through the electrochemical CO2 reduction to CO. It is well known that the activity of a CO2 reduction reaction catalyst depend on the type of material and surface nano-structure. Consequently, numerous researchers are interested in the relation between the catalyst activity and surface conditions such as morphology, oxidation state, and crystal orientation. However, it is difficult to explain the mechanisms of catalytic CO2 reduction and visualize the catalytic activity. Our results demonstrate, that this strategy not only improved the selective CO production, but also helped visualize the catalytic reactivity on the edge site via open-loop electric potential microscopy (OL-EPM). The obtained OL-EPM image strongly suggests that the edge site of porous Zn acts as an efficient reactive site in the CO2 electrochemical reduction reaction.

    DOI Scopus

  • Green Surface Cleaning in a Radical Vapor Reactor to Remove Organic Fouling on a Substrate

        ACCCEPTED in 2018.8.7   2018.10  [Refereed]

    DOI

display all >>

Publications (Books) 【 display / non-display

  • 細胞・生体分子の固定化と機能発現

    高辻義行、春山哲也 ( Joint Work ,  第4章「電気化学反応や自己組織化による分子固定化技術と応用:ペプチドからタンパク質分子まで」の全文 )

    シーエムシー出版  2018.04 ISBN: 978-4-7813-1326-9

  • Encyclopedia of Physical Organic Chemistry

    ( Other )

    2017.06 ISBN: 978-1-118-47045-9

  • バイオセンサの先端科学技術と新製品への応用開発

    春山哲也(分担) ( Joint Work )

    技術情報協会  2014.04

  • これからの技術と需要をつなぐものエコノミー & エコロジー from エコフィッティング(九工大 世界トップ技術 Vol.3)

    春山哲也(編、著)ほか ( Joint Work ,  編集委員長および著者を務めた。 )

    西日本新聞社  2012.03

  • 環境・エネルギー材料 ハンドブック

    春山哲也 ( Joint Work )

    オーム社  2011.02

display all >>

Conference Prsentations (Oral, Poster) 【 display / non-display

  • 金属担持を制御した炭素電極によるCO2電解還元

    高辻義行、川野明日香、森本将行、春山哲也

    電気化学会第83回大会  2016.03  -  2016.03 

  • Radical Vapor Reactorで発生させた活性酸素による殺菌効果

    石川祥子、見寄暢宏、春山哲也

    電気化学会第83回大会  2016.03  -  2016.03 

  • 微小Ag担持した炭素電極によるCO2電解還元

    森本将行、高辻義行、春山哲也

    電気化学会第83回大会  2016.03  -  2016.03 

  • Cu担持制御した炭素電極によるCO2電解還元

    川野明日香、高辻義行、森本将行、春山哲也

    電気化学会第83回大会  2016.03  -  2016.03 

  • 空気と水を使った1段階でのアンモニア合成

    浪瀬貴充、上村進太郎、下清水直哉、春山哲也

    日本化学工学会 第81年会  2016.03  -  2016.03 

display all >>

Lectures 【 display / non-display

  • 分子相の搖動設計による分子界面の高機能化

    第24回シンテリジェント材料/システムシンポジウム   2015.01.19 

  • 分子界面のナノ構造制御とその電気化学的応用

    電気化学会第81回大会 ( 関西大学 )  2013.03.30  電気化学会

  • Designed interface and designed cell for cellular biosensing

    14th International Meeting on Chemical Sensors (14th IMCS)   2012.05.21 

  • Living cell based qualified analysis; Cellular biosensing as through-put analysis (HTA)

    第7回細胞工学研究会 ( 物質材料研究機構 MANA )  2012.03.02  物質材料研究機構 MANA 生体機能材料ユニット

  • Cultured cell based biosensor for qualified analysis as high through-put analysis (HTA)

    International Symposium on Olfaction and Electronic Nose (ISOEN 2011) ( Rockefeller University, New York City, USA )  2011.05.02  ISOEN

display all >>

Other External Funds 【 display / non-display

  • High through-put function analysis of neural chemicals on cellular biosensing with data analysis through chemometrics

    Offer organization:  Ministry of Education, Culture, Sports, Science and Technology 

    Project Year:  2011.04  -  2013.03